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The plane problem on the distribution of stresses in an elastic, aniSO- 
tropic strip, deformed by loadings of particular and general form, has 
been treated by various authors. In [l-51 the solutions are constructed 
with the aid of Airy’s stress function in the form of polynomial or 
trigonometric series. Kufarev and Sveklo [61 and Shepelenko [VI have 
made use of the complex representation of the stresses and displacements; 
the solutions of the two basic boundary value problems, and of some 
mixed ones, were found by means of Fourier integrals. 

Below, an account will be given of the general operator method of 
solution of the present problem, which is analogous to the method of 
A. I. Lur’ e with the aid of which elegant solutions of simple form have 
been obtained for three-variable problems on the elastic equilibrium of 
the isotropic layer and of the thick plate ([8. Chaps. 3 and 41 and [91). 

1. Formulation of tbe problem and the general eqmationa. We consider 
an infinite, elastic, anisotropic strip of constant with h, which is in 
a state of generalized plane stress or plane strain under the action of 
a self-equilibrating system of forces distributed along the edges. We 
will assume that the material obeys the generalized Hooke’s law and that 
the strains are small. The x-axis is directed along the axis of the 
strip and the y-axis is normal to the boundary. 

When there is only one plane of elastic symmetry, parallel to the, xy 
plane, the equations of generalized Hooke’s law can be written down in 
the following form 
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where aij are the strain coefficients; they can be expressed in terms of 
Young’s modulus, the shear modulus, and Poisson’s ratio, etc. (see, e.g. 
[l, p.181). 

Henceforth we will denote the derivative with respect to I by a 
(2 = a/&) and the derivative with respect to y by a dash. Then the 
formulas for the stresses in the plane problem and the equation for the 
stress function can be written down as 

5, = F”, oy = a2F, %I = - aF’ (1.2) 
Pld”” - 2p,saFm + (3312 + pss) a=F” - 2fJzsa)F’ + P&F = 0 (1.3) 

In the case of generalized plane stress, the constants pij = oil, and 
in the case of plane strain Pij = aij - ‘i3Oj3 ’ ‘33’ 

We will seek the solution of equation (1.3) in the form of the series 

F = 2 gk (2) ti 
k=o 

(1.4j 

Substituting this expression into equation (1.3) and equating to zero 
the coefficients of each power of IJ, we obtain an infinite system of re- 
currence equations connecting the g with different indices and their de- 
rivatives up to and including the fourth. This system allows one to ex- 
press all functions in terms of four, e.g. g,,, gl, g2, g3. The character- 
istic equation, corresponding to (1.3)) has the form 

P1iP4 - 281c.P + C&z + b3) P* - 3326P -t Pn = 0 (1.5) 

the roots of which, called the complex parameters of the plane problem, 
will be denoted by IAN, pg, Fl, pg. When the complex parameters are dis- 

tinct the general expression for F can be written down in the following 
complex form 

where 

(1.6) 

(4.7) 

The arbitrary functions q~l, p2 of the variable x (generally speaking, 
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with complex coefficients) and the conjugate functions ql, q2 can be de- 

termined from the boundary conditions on the sides of the strip y = &h/2. 

The points in (1.6) and the following formulas will be used to sepa- 

rate the differential operators from the function to which they are 

applied. 

For simplifying the computations in the sequel we will only consider 

an orthotropic strip. In this case we have aI6 = as6 = aa = a,5 = 0 in 

equations (1. I), and consequently $16 = p26 = 0. The displacement com- 

ponents u, v can be determined in terms of the known stresses by the 

equations 

We introduce the new parameters fsl, fsq which are the roots of the 

equation 

Pld - GYlE $ Pss) sa + Pza = 0 (1.9) 

men PII and Fz2 are finite and non-zero the following three cases 

for the roots are possible 

(1) s1 = ,3 ) s2=6; (2) s1= P, s2 = p; (3) si = 3 -+ ai, sa = 3 -- zi 

(a, p, 6 are positive, real numbers). 

If s1 # s2 the general expression for the stress function can be 

written down as 

F = COS S1 ya. FI + COS s2 Ya. Fz -i- Sin SI Ya. &* $ Sin SP Ya. Fz+ (1.10) 

Introducing the new notation for the unknown functions 

f)( = ap,, fk+z aF,* (1.11) 

we obtain by formula (1.2) the expressions for the stresses 

cX = - a (~~2 cos s1 ya. j, + ~2 cos sz ya. f2 + s12 sin s1 ya. h+ + s2 sin s2 ya. f2*) 
ou = a (~0s s1 ya. /1 + cos s2 ya. 12 + sin s1 ya. fl* + sin s2 ya. i2*) (1.12) 

TX, = a (s, sin s1 ya. ,fl + s2 sin s2 ya. f2 - sI cos s1 ya. j,* - s2 cos s2 ya. la*) 

Integrating the equations (1.8) we find the general formulas for the 

displacements 

u = (PI2 - pd) (COS sI Ya. i, + sin s1 ya. f,*) + 

+ (PI2 - Plls22) (COS s2 9. f2 + sin sp Ya. f2*) - OY + u. (1.13) 
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b, UfJ’ vo are arbitrsry constants ch&r&cterizing “rigid” displacements 

in the X, y plane). 

In order not to complicate the problem too much we will assume that 

in the whole region on each of two straight edges of the strip either 

the stresses or the displacements, or one of the stress components and 

one of the components of the displacement, are prescribed. Satisfying 

the boundary conditions, we will obtain 8 system of four differential 

eciuations (of infinitely high order) for the four unknown functions of 

the variable x and the problem has been reduced to the integrstion of 

this system. For the orthotropic strip it is meaningful to resolve the 

prescribed tractions or displacements into components symmetric and 

antisymmetric with respect to the r-axis and to find the corresponding 

distributions of stress. i.e. the symmetric and the antisymmetric solu- 

tions, We will limit consideration to the case of prescribed tractions; 

the solution of the second basic problem and of the mixed ones can be 

found in &n identical manner. 

If the strip has finite length, the conditions on the end faces - in 

the present work - will not be satisfied exactly snd we will limit our- 

selves to satisfying only the condition that the resultant force 8nd re- 

sultant moment of the loading agree with those of the prescribed load- 

ing. 

However. we note that the operator method makes possible the deriva- 

tion of more exact solutions. 

2. Syretric distribution of tractions. Let the two sides of the 

strip be subjected to the tractions p, -r (per unit area) which are sym- 

metric with respect to the 

t ions 

cv = P (4, 

x-axis (Fig. 1). We have the boundary condi- 

In an orthotropic strip 

T ,,=fr(z) when y=fh/2 f2.lI 

the distribution of stresses will also be 

symmetric and it is possible to take fl* = f2* = 0 in advance In formu- 

las (I. 12) and (1.13). Assuming that sl # ~g, the boundary conditions 

lead to a system of two equuations for fl and fz 

4 coss~.fl+cOS~-f*)=p 



Elastic equilibriur of an anisotropic strip 201 

We denote the 

of the system of 

s1 sin (2.2) 

differential operator proportional to the determinant 
equation (2.2) by Q 

~=~(s,,in~cos~-ss,n~cOS~)= 

= 0.5 
[ 
Sl + S2 
a_~% sin (sl - ss) !f- + sin fs~ + sp) $ ] (2.3) 

We introduce the stress 

Fig. 1. 

functions x1 and x2 satisfying the equations 

Q @%I) =P, Q G%s) = 7 (2.4) 

For this it suffices to set 

fl = 
P 

- - sasin 
s1 - sa ( 

s&3 S&3 
--y *%1fcos -2- ‘X2 ) 

fs=sq-&(s~ains$ .xl-ccoa T. xs) 
(2.5) 

Substituting these values in (1.12). we ob- 

(2.6) 

tain the formulas for the stresses 

WP 

f 

sshif 
d = -_-..- s~sin2coss~@--sssin 

slhCi 
x s1 - 9 

2 eoss*Ya 
> 
ax1 - 

1 sSha 
- - st cos 2~~~ slya -S~~COS 

slha 

Sl - S2 ( 
2~~~ S2va ax2 

1 

1 
=gl=- - s1 --,Se i 

saw 
s2 sin 7j-- cos sly8 - sl sin 

sM 
2 coa saya ) axI + 

1 
-I------ =I - % ( 

szha Slhd 
cam 2 cOssl ya - cos 2~~~ s2ya ) aXa 

z 
wa 

XY =- - Sl - se ( 
&ha slha 

sin 2 sin sl ya - sin 2 sin saya ax, + 
1 

+ & ( 
s$hha slha 

s1 cos -ij- sin s,ya - ss cos 2 sin saya > ax2 

The expressions for the displacements will not be quoted because 

their structure is clear from (1.13) and (2.5). In the formulas for the 
displacements, not the first derivatives of x1 and x2, but the functions 
themselves appear. 

In case (3). when sl = p + ai, s2 = p - ai. in place of (2.3) we will 
have 
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Q = 0.5($1111a.ha + sin pAa) 
(2.7) 

When s1 = s2 = p 

Q =0.5 @ha + sin PAa) (2.6) 

and the expressions for the stresses are obtained from (2.6) by letting 

a-0 

-3[(2 COS '$ + y sin ‘$ ) CO9 pya - cos y Bya sin pya 1 ax2 

$ = 
pha pha (3ha 

sin 2 + 7j- cos 7j- 
1 

CoS pya + sin 3; 3~8 sin /3ya 1 axI + 

$ ( + sin ‘$ cos pya - cos ‘$ y sin PyCJ aax, ) 

7 XV =-P( 2 sin BP y cos j3ya - f cos 3; sin pya 
> 

aax, + 

-I- 
cos PAa I filla sin wa 

2 2 
2 

1 
sinpya+ cos '~&J~COS pya 1 ax2 

(2.9) 

Then, when p = 1, we obtain the stress distribution in an isotropic 

strip (sl = s2 = 1). By means of integration across the width of the 

strip it is easy to veryfy that the stresses in every cross-section re- 

duce to an axial force depending only on x1, i.e. on the given shear 

tractions 

3. Antissmetric distribution of tractions. 

tribution of external loading (Fig. 2). the 

following boundary conditions must be satis- 

fied 

o,=fsW, 7xv = t (2) for y = * -$- (3.1) 

Assuming f, = f, = 0, we obtain for fl*. 

f2* the system (when s1 f s7) 

4 
sin y . fl+ + sin ‘$ * fp*) = q 

a (QCOS T * fr’) = - t (3.2) 

For an antisymmetric dis- 

Fig. 2. 

We introduce the stress functions v,, vy2 such that 

slha s*hha 
f,.=secos2.g’+sinZ.~, 1,’ = - S1 cos SF . * _ sin ST * l#4 (3.3) 
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and we obtain for them the equations 

Q' (WI) = q, Q* (Wz) = t 

where 

Q*=+ 
s,ha s&i szha slha 

Sl - 8.2 
s~sin~cos~--sisinTcosT 

= 0.5 
[ 

s1 + .% ha ha 
G_ sin (sl - sz) 7j- - sin (sl + ~2) 7j-- 1 

The stresses can be determined by the formulas 

c$ = - * si cos ‘9 sin siyf3 - sw cos F sin s2ya 
( 

f3Qi - 

- A2 
( 
s,w sin F sin slya - sgw sin ST sin s&J 1 

a\pl 

i szha s,ha 
by = - 

s1- sI ( 
sa cos 2 sin slya - s1 cos 2 sin s2ya @l-k 

) 

+A( sin T sin s,ya - sin ‘9 sin slya 
) 

* 

Slh 
T xu=-- -3 - 82 ( 

cos ‘q cos slya - cos ST cos slya 
1 

alp, - 

i s*ha da 
- - 

Sl - se 
sl sin 2 cos slya - sp sin 2 cos saa aq, 

(3.4) 

(3.5) 

(3.6) 

In case (3) 

Q* =: 0.5 ( <-siahaha - sin pha) (3.7) 

When sl = s2 = p 

Q* == 0.5 @ha - sin p ALi, (3.8) 

5 I. _ 32 [(ZF sin ‘hd Bha 
x z t ~0s ‘y sin ?ya + cos $f gja cos 3 ya aq~, - ) 1 --J[(*siny-g! ) cos 'F sin pya + sin y pya cos gya aQ, 1 

[( 3ha pha 3ha 
J,, = ‘2 sin yL- - cm -j- sin aya + cm ‘$ pya sin pya 

3 
alp, - 

(3.9) 

--- 
( 
sin yyc0s3ya-+cosP$sinpya 

1 
azQ8 

r.r,, -: , 3* ((‘OS ‘$ y sin 3ya - +- sin ‘F cos 3ya a2Q1 + 
) 

G 
R 

3E ?ha 
2 cos -;li- - sin y t sin ‘T pya sin pya 1 aQw 

Across a cross-section the stresses (3.6) and (3.9) can be reduced, 
in general, to a bending moment and a shearing force acting in the plane 
of the cross-section. 
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We note that the method of solution of the problem for a non-ortho- 
trORiC Strip turns out to be essentially the same as that for an ortho- 
tropic strip, and it is only necessary to proceed from the more coapli- 
cated expression for the stress function (1.6). The boundary conditions 
give rise to a system of four equations for the functions ‘pl, q2, +1, i&, 
which in the general case cannot be resolved into two systems similar to 
(2.2) and (3.2). 

4. Stresses in a strip of finite length. In the case of a strip of 
finite length 1 it is necessary to satisfy conditions not only on the 
sides y = *h/2 but also on the end faces. For this, use must be made of 
so-called homogeneous solutions which correspond to the case when the 
edges y = *h/2 are free of traction (p = T = 0, Q = t = 0). Each of the 
equations 

Q (axk) = 09 Q' @&I = 0 (k = 1,2) (4.1) 

has an infinity of solutions, but we only consider the simplest homo- 
geneous solutions which can be obtained by retaining only lower powers 
of a in the expansions of the operators. 

A) Symmetric distribution. Discarding in the expression Q powers of 
a higher than the first, we obtain the equations 

a (axl) = 0, a (8x1) = 0 (4.2) 

Hence it follows that 

ax, = Cl, ax, = ca (4.3) 

By formulas (2.6) we obtain the stresses corresponding to tension or 
compression by normal tractions distributed normally to the faces 

(4.4) 

B) Antisynnctric distribution. In the expansion of the operator Q* 
the lowest power of a ~111 be the third. Discarding all powers of a 
higher than the third, we obtain the equations 

a* (aqd = 0, *(a*) -0 

Hence it follows that 

W = Cd + DIZ +EI, ag,=CG'+&++E¶ (4.6) 

To these formulas correspond stresses connected with a bending moment 
and a shearing force 

dz = (& + &I Y, dv = 0, Ily=+(gY¶) 

(4.7) 
(A1 = - 28181 p1+ r3C1, BI = - WI (a+ 4 (4 + m)) 
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The solution of the problem for a strip of finite length is obtained 

by adding the homogeneous solutions (4.4) and (4.7) to that for the in- 
finite strip. The three constants A,, Ai, B1, can always be selected so 

that the necessary conditions (integrated or averaged) on the end faces 
can be satisfied. 

The method of solution for a strip will be illustrated with two 
examples. 

5. Polynomial distributian of load. Equations (2.4) 
panded form can be written out in the following manner 

and (3.4) in ex- 

(5.i) 

(5.2) 

where 

PI = Pt 

ps = T, 

a2i+l = (_ f)i (‘I +2itfI TiF 1, Be)*’ h2i 

( . ,. , 
(I = 1,2,. . .) (5.3) 

PI = 9, 

qz =G 

pzi+l = (_ $1 fsl “2$;, i”;i-f”“2i b_zi 

If pk and Tk are given in the form of integral polynomials of x of 
degree R (where n is a positive integer), then it is easy to see that 
$o( will be a polynomial of degree n + 1, and aYk will be a polynomial 
of degree n + 3. The determination of the unknown coefficients of the 
functions a&, aVk does not present any great difficulty; we obtain the 
equation for them by equating coefficients of like powers of x on the 
left-hand and right-hand sides of (5.1) and (5.2). 

Suppose, e. g. that one face of a strip is clamped while the other is 
free (a cantilever) and that the long edges are subjected to nornal 
tractions distributed according to a cubic paraboloidal law q3x3 : E3 
(Fig. 3). The stresses can be built UP from those resulting from the 
symmetric loading 

p=-E = * 
2 T’ i i 

T=O (5.4) 

and those from the antisymmetric loading 

$A(;)“, t-=0 (5.5) 

The first can be found with the aid of 
the functions 

Fig. 3. 
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ax1 =: QS 
4 (Sl -j-b*) hP 

(- ZI + i2arxa), ax2 I= 0 (:,.6) 

Substituting these values into the formulas (2.6). it will be neces- 
sary henceforth to expand the sines and cosines into series and, after 
multiplication, to reject ali powers of a higher than the fourth (thus 
ax, will be a polynomial of fourth degree). \Ve obtain 

The final formulas for the stresses resulting from the symmetric 
loading will have the form 

On the free and x = 0 the stress uz vanishes and rxy constitutes a 
self-equilibrating system of shearing forces so that the necessary con- 
ditions turn out to be satisfied. 

For the functions determining the stresses due to the antisYmmetric 

loading (5.5)) we find the expressions 

x4 
- 3o ; +) = 10 (q ,“:a, khV (ti + 0.75mPti), al& = 0 (5.9) 

We now quote the final formulas for the stresses obtained from (3.6) 

+ G [ 5k2h4y + 8 (m* - 5k2) Py8 + 16 (m a - k2) 2/o] s} 

(5. i0) 

-c xu=&((ydJd- $ (h4 - 24haya + 8oy’) x2+ 

+ & [(Z&m2 + ke) M - ~k~h4y~~ 48 (51cB - ma) ks$ + 64 (m2 - k2j ?pf } 

On the free end we have ax = 6 and the shearing stress can be re- 
duced to a force the magnitude of which, per unit thickness of the strip. 
is equal to 
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p = & (27m2 - 20k2) (5.11) 

In order to eliminate this “superfluous” force we must add a distri- 

bution of stresses of the form (4.7) 

12P 5, = __ xy, 
h3 

Gy = 0, z 

The complete stresses in the cantilever are obtained by superposition 

of the stresses determined by formulas (5.5)) (5. 10) and (5.12). 

The expressions for the displacements will not be quoted. We merely 

mention that the arbitrary constants o, u,,, IJ~ from formulas (1.12) can 

be found from the additional conditions at the clamped end 

U=V=LO 
Or 

for x=l, 2/=0 (5.13) 

6. Loading given in the form of a Fourier series. J,et the orthotropic 

strip of length 21 be loaded on the long edges by tractions represented 

in the form of Fourier series. An arhitrary problem of this type can be 
solved with the aid of the Airy stress function in the form of a series 

with the addition of polynomial terms (see, e.g. cl, pp.73-751). In 

particular, the solution of the problem of a strip with free end faces, 

subjected to symmetric tractions was given in [5!. 

We will show that it is easy to derive the solution of this problem 

with the aid of the above-described, general method. It is sufficient 

to consider the particular case when the ends are free, and when the 

tractions are normal, symmetric and distributed on both edges y = kh/? 

according to a cosine law, i.e. 

p = p, cos 5:” , 
I 

-c=q=tzo (6.1) 

where n is an arbitrary, real non-zero number and the origin of coordi- 
nates is placed at an arbitrary point on the axis of the strip. 

In this case x2 = 0, and x1 can be determined from the equation 

Q (3x1) = p, cos nF (6.2) 

‘Ye point out as a preliminary some formulas which facilitate the 

finding of the solution of equation (6.2) and of the associated stresses 

and displacements 
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sin aax em= sin aa ea*, cosai3xe": = cos a4eaX (6.3) 

sin aa cos pa x sin ax = sinh au cash FQ LOS 4~ 

cos aa cos pa x sin 4x = cash aa cash &I sin (IX 

sin aa sin pa x sin ax = - sinh au sinh pa sin ax 

sin aa cos pa x cos 4x = - sinh au cash pa sin ux 

cos aa cos 62 x cos ax = cash aa cash pa cos ax 

sin aa sin pa x cos ax = - sinh aa sinh (34 cos ax 

By a. p and 4 is always meant an arbitrary, constant number not equal 
to zero, real or complex, or a linear function of y. The derivation of 
these formulas is elementary: the first two are found by expanding the 
sine- and cosine-operators into series of powers of 3; the remainder 
follow by replacing the arbitrary trigonometric functions by sums or 
differences and finally expanding the operators in series. 

Making use of (6.3), we find in the case s1 # s2 

nscx 
axi = Apn(sl - sz) sin - 

1 

where 

A= 1 nab 

s:sinhs~pnhs$~ - spsintlsa~wshslr ’ r=T (6.5) 

Substituting into (2.6) the value +o( = 0 and the expression for ax,, 
and taking into account (6.3)) we obtain the final formulas for the 
stresses 

a, = Akp,, sww SI rinhs+os~~ - ww 
1 

- s&nhs~~coah- 
1 

cos n!! 
1 

Q,, = - Ap, s~dnbs~~wd~ - S1 sinhsl~ coda- 

(6.6) 

5 

On the ends of the strip, as well as in an arbitrary cross-section, 
the stresses constitute a self-equilibrating system of forces (the re- 
sultant force and moment vanish). and consequently the required condi- 
tions on the free faces have been satisfied (as is sometimes said, “with 
an accuracy according to Saint-Venant’ s principle”). 

It is just as simple to find the stresses also in the cases when the 
tractions are distributed according to an exponential or hyperbolic law. 
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