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The plane problem on the distribution of stresses in an elastic, aniso-
tropic strip, deformed by loadings of particular and general form, has
been treated by various authors. In [1-5] the solutions are constructed
with the aid of Airy’s stress function in the form of polynomial or
trigonometric series. Kufarev and Sveklo [6] and Shepelenko [7] have
made use of the complex representation of the stresses and displacements;
the solutions of the two basic boundary value problems, and of some
mixed ones, were found by means of Fourier integrals.

Below, an account will be given of the general operator method of
solution of the present problem, which is analogous to the method of
A.I. Lur’e with the aid of which elegant solutions of simple form have
been obtained for three-variable problems on the elastic equilibrium of
the isotropic layer and of the thick plate ([s, Chaps. 3 and 4] and [9]).

1. Formulation of the problem and the general equations. We consider
an infinite, elastic, anisotropic strip of constant with h, which is in
a state of generalized plane stress or plane strain under the action of
a self-equilibrating system of forces distributed along the edges. We
will assume that the material obeys the generalized Hooke's law and that
the strains are small, The x-axis is directed along the axis of the
strip and the y-axis is normal to the boundary.

Yhen there is only one plane of elastic symmetry, parallel to the xy
plane, the equations of generalized Hooke’s law can be written down in
the following form
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€ = andy + 8125, + 4135, + Q1eTyy, Yxy = @163, + @265, + 0363, -+ QesT,,
2, = a10; + 20, + a6, + 2Ty, Tyz = 8Ty, + apst,, (1.1)
€, = @130, - a333,; 1 G350, + asaTy,,, Yxz = 04Ty, 1 55T,

where a, are the strain coefficients; they can be expressed in terms of
Young’ s modulus, the shear modulus, and Poisson’s ratio, etc. (see, e.g.
(1, p.18]).

Henceforth we will denote the derivative with respect to x by o
(3 = 9/9x) and the derivative with respect to y by a dash. Then the
formulas for the stresses in the plane problem and the equation for the
stress function can be written down as

s, =F", s, = 0% F, Ty = — OF 1.2)
BuFTY — 2B168F™ + (2Brz + Bes) OF" — 2B2ed¥F’ + Bpad*F = 0 (1.3)
In the case of generalized plane stress, the constants Bij = °ij' and

in the case of plane strain pij S a;; = 3853 1 agy.

We will seek the solution of equation (1.3) in the form of the series

F=D g @y (1.4)
k=0

Substituting this expression into equation (1.3) and equating to zero
the coefficients of each power of v, we obtain an infinite system of re-
currence equations connecting the g with different indices and their de-
rivatives up to and including the fourth. This system allows one to ex-
press all functions in terms of four, e.g. g,, g;. 83, 83. The character-
istic equation, corresponding to (1.3), has the form

Buk® — 23161% + (2B12 -+ Bes) B — 2Bzept + Bz =0 (1.5)

the roots of which, called the complex parameters of the plane problen,
will be denoted by Hi» Mg, ﬁl, Ez. When the complex parameters are dis-
tinct the general expression for F can be written down in the following
complex form

Fe= V0. g 4 V0. g - T -+ ety @2 (1.6)
where
2.2 3
e‘*“6=1+py8+g.2—!{-62+%!!’—’0’+... (4.0

The arbitrary functions @,, ¢, of the variable x (generally speaking,
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with complex coefficients) and the conjugate functions $l, 62 can be de-
termined from the boundary conditions on the sides of the strip y = th/2.

The points in (1.6) and the following formulas will be used to sepa-
rate the differential operators from the function to which they are
applied.

For simplifying the computations in the sequel we will only consider
an orthotropic strip. In this case we have g, = 89 T a3 S aye T 0 in
equations (1.1), and consequently p16 = p26 = 0. The displacement com-
ponents u, v can be determined in terms of the known stresses by the
equations

du == Busx -+ Bm:fy, Vo= Blzdx <+ Bnﬁu, dv + u = B“fzy (18)

We introduce the new parameters isl, is2 which are the roots of the
equation

Bust — (2B1s - Bes) s + B2 = 0 (1.9)

¥hen pll and p22 are finite and non-zero the following three cases
for the roots are possible

(1) $1=3, s, =§; (2) =8, s2=8: @B)si=8+ai, ss=p--x
(x, B, & are positive, real numbers).

If s, # s, the general expression for the stress function can be
written down as

F =cossy y0. Fy + cossz yd. Fz+sins, yd. Fi* - sins; yd. Fp* (1.10)

Introducing the new notation for the unknown functions
[ =0F,, [yt =0F,>* (1.11)

we obtain by formula (1.2) the expressions for the stresses

O, = — 0(52cos s Y. f1 -+ st cos sy Y3. fo+ sy2sinsy y3. f/1* -+ s sin sy 9. fo*)
G, =0(cossy y0. /y+ coss; y0. fosins, yd. f* +sins; y0. f2*)  (1.12)
Ty = 0(s18ins; Y9, fi+s2sinsy y9. fo— s1€05 5 yB. /L* — 50852 Y3, fa*)

Integrating the equations (1.8) we find the general formulas for the
displacements

w=(B1z — Bus?) (cos sy ¥8. fy - sins, yd. fr*) +
+ (Biz — Buis2?) (cos s; yd. f2 -+ sin s3 y3. f2*) — 0y + uo (1.13)
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v= ('%?-“ anl) (sin# y8. L —coss yd. i*) +

+ (B—;:" - Bna:) (sin sg. Y0 fu— cos s yd. fu*) + oxr + vo

{w, ug, v, are arbitrary constants characterizing "rigid" displacements
in the x, y plane).

In order pnot to complicate the problem too much we will assume that
in the whole region on each of two straight edges of the strip either
the stresses or the displacements, or one of the stress components and
one of the components of the displacement, are prescribed. Satisfying
the boundary conditions, we will obtain a system of four differential
equations (of infinitely high order) for the four uynknown functions of
the variable x and the problem has been reduced to the integration of
this system. For the orthotropic strip it is meaningful to resolve the
prescribed tractions or displacements into components symmetric and
antisymmetric with respect to the x-axis and to find the corresponding
distributions of stress, i.e. the symmetric and the antisymmetric solu-
tions. We will limit consideration to the case of prescribed tractions;
the solution of the second basic problem and of the mixed ones can be
found in an identical manner.

If the strip has finite length, the conditions on the end faces - in
the present work - will not be satisfied exactly and we will limit our-
selves to satisfying only the condition that the resultant force and re-
sultant moment of the loading agree with those of the prescribed load-
ing.

Hiowever, we note that the operator method makes possible the deriva-
tion of more exact solutionms.

2. Symmetric distribution of tractioms. Let the two sides of the
strip be subjected to the tractions p, T (per unit area) which are sym-
metric with respect to the x-axis (Fig. 1). We have the boundary condi-
tions

sy = p (%), Ty = T(®) wheny=-4+h/2 2.0
In an orthotropic strip the distribution of stresses will also be
symmetric and it is possible to take f;* = f,* = 0 in advance in formu-

las (1.12) and (1.13). Assuming that s; 7 s,, the boundary conditions
lead to a system of two equations for f, and f,

5h? sshd
6(c03'1—2“ < f 005'%‘ 'fz)"""P
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hd 1o
a(s,sin B h+ssin fz-z—'fg)::‘t 2.2)

We denote the differential operator proportional to the determinant
of the system of equation (2.2) by Q

1 Slha Sgha gha Slha
Q=sl—‘§;(51sm 5 cosT--s, sin —5— 5 C s——z—)m
hd
__05{ s1+3 251]1(31-“-32) 2 +Sin(31+85) _2'] (2.3)

We introduce the stress functions y, and x, satisfying the equations

Q@) =p, Q) =~ (2.4)
For this it suffices to set
i . 8k s0h3
fi= — (-——~ sgsin —5— %1 -+ cos —%‘ Xz )
p *(oin® " wo 25)
fo= g5 \susin 5= - —cos =5 %

Fig. 1.
Substituting these values in (1.12), we ob-
tain the formulas for the stresses

818
%= 5 — 5

3hO
( st sm 2 COS 83 Y¥8 — 8¢ sm —— cos s,ya) I —

8hd
~h—% (sl €05 —5— COS 51 yd ——sfcos -—-— cos s,ya) e
1 sghd
Sy = T h—s ( §3 8in —5— ¢0s 5, Y& — s;sm 5 cos Sgya) - 0
1 52hd (2.6)
+ Pp— ( €0s 5™ €08 51 Y3 — cos ———- cos s,ya) s
5153 . SR8 .
Tey = — 5 (sm —5 sin & yd — sin ——-sm szya) M+
1 sehd sihd |
-+ Py ( §1 €0s —5— sin $1y0 — 85 COS l§~ sin szya> Y2

The expressions for the displacements will not be quoted because
their structure is clear from (1.13) and (2.5). In the formulas for the
displacements, not the first derivatives of X1 and Xg» but the functions
themselves appear,

In case (3), when s, = [ + ai, sq = P — «i, in place of (2.3) we will
have



202 S.G. Lekhnitskii

Q= O.S(j?pmha.ha + sin Bha) (2.7)

When s, = s, =
Q =0.5 (3h9 - sin Bkd) (2.8)

and the expressions for the stresses are obtained from (2.6) by letting

a-~0

. BhO  Bho . BhO .
= [32 [(sm =5 cos ' 2 ) cos Byd — sin 5~ Bydsin Bya] A —
ho hod had
—3 [(2 o] @-2— E— sin —) cos Byd — cos BT Byd sin Bya] Y2

. Bha Bha . pho .
G, = ( sin 5~ =5~ cos 5 ) cos Byd + sin 5 Byd sin By&] o+

h 3h3 ho
+ (—2— sin '7— cos Byd — cos B?- ysin By&) e
(2.9)

hd h hd
T, = — 32 (sin 37 y cos Byd — —5~ cos BT sin Bya) -+

Xy
hd ho ho ho

—L[( Bhd +B£ i Bz )31nBy8+cos 52 Bya cos Bya] s

Then, when P = 1, we obtain the stress distribution in an isotropic
strip (s; = s = 1). By means of integration across the width of the
strip it is easy to veryfy that the stresses in every cross-section re-
duce to an axial force depending only on X+ i.e. on the given shear
tractions

3. Antisymmetric distribution of tractions. For an antisymmetric dis-
tribution of external loading (Fig. 2), the
following boundary conditions must be satis-
fied

h
o, =t4q (), Ty =1t(2) for y=;{:—2—- 3.1

Assuming fl = f2 = 0, we obtain for f,;*,
fo* the system (when s, # 54)

a(sin 8_1%@ - h* +sins’h—za‘ . )'a‘) =gq
] (31 cos il-;—‘?' + /1* 4 22 cos f_’;‘i . /g') =—t (3.2)

We introduce the stress functioms y,, y, such that

siho s1hd
Hh* =3 cos <P+ sm « Pa, f3* = — &1 cos 12‘ - P — sin _12_ - ¢Pa (3.3)
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and we obtain for them the equations

Q* () = ¢, Q* (9e) = ¢ (3.4
where
. 1 5;h0 sghd sohd slha) _
Q =81Th(s,sm 5 C0S —H— —sisin—5—cos 5| =
hd hd
=0.5 [ ! + sin (s; — s3) 5 - sin (s; + s3) —2-] 3.5)
The stresses can be determined by the formulas
ho hd
6, = — slsi:a (31 cos 522— sin s;y9 — s3 cos slT sin sgya) o, —
1 sohd 2 sihd 6)
~h—s (sl sin —2 sin s1y9 — sg?sin —— 3 sin sqyd | O,y
1 Szha . slhb .
5, = — 5 (sz cos —5— sin §1y9 — 51 cOS —5sin sgyii) N + 3.6)
1 s3hd 1hd
+ Py (sm ~5— sin 51y — sin 252 2 sin s,ya) s
hd ho
Ty =— slsl_s’sz (cos 8—22— c0S 8,y0 — cos SIT cos s,ya) oy, —
1 . §ho 3 shd a) P
e (sl sin =5~ cos 51y — 5 sin 5 C0853y0 ) Oy
In case (3)
3 .
Q* =- 0.5(-—1—5inhozh6—sm 3ha) (3.7)
When s| = s, = p
Q* == 0.5(3h3 — sin B ha, (3.8)
L[ (BRI . B3hO Bhoy | Bho
S, —3 L ~§—su1-2-—rcos-E—)su13y6—kcos-E—Byacosﬁya]éwl—-
. 3hd  Bho Bha) 3hd
——3[(2 sin =~ — 5 cos 5 | sin By8—~—sm Byd cos Byd | Oy,
3hd . Bho 8ho B
3, = (— sin == —cos =5 ) sin 3yd + cos —— Byb sin Bya] P, — (3.9)

_ 3ha R
- (sm R ycosByd — —— ) cos 2 sm Bya) oy,

2hd h Bho
= 32 ((05 5 ysin 3yd — -5 sin 5~ cos Sya) oty +

[{3ho 3ha . 3k B
- [( B €085 —sin T) cos Byd - sin —— Byd sin By&] s

Across a cross-section the stresses (3.6) and (3.9) can be reduced

in general, to a bending moment and a shearing force acting in the plane

of the cross-section.
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We note that the method of solution of the probleam for a non-ortho-
tropic strip turns out to be essentially the same as that for an ortho-
tropic strip, and it is only necessary to proceed from the more compli-
cated expression for the stress function (1.6). The boundary conditions
give rise to a system of four equations for the functions ¢,, @,, 3;. P,.
which in the general case cannot be resolved into two systems similar to
(2.2) and (3.2).

4. Stresses in a strip of finite length. In the case of a strip of
finite length | it is necessary to satisfy conditions not only on the
sides y = th/2 but also on the end faces. For this, use must be made of
so-called homogeneous solutions which correspond to the case when the
edges y = th/2 are free of traction (p =T =0, ¢ = ¢t = 0). Each of the
equations

Q (9%) =0, Q*(3%,) =0 (k=1,2) (4.1)

has an infinity of solutions, but we only consider the simplest homo-
geneous solutions which can be obtained by retaining only lower powers
of O in the expansions of the operators.

A) Symmetric distribution. Discarding in the expression Q powers of
Q higher than the first, we obtain the equations

4 (0) =0, 3 () =0 (4.2)
Hence it follows that
O = C,, 1= C, 4.3)
By formulas (2.6) we obtain the stresses corresponding to tension or
compression by normal tractions distributed normally to the faces

8, = Ay, Gy =Ty =0 (Ao = — (81 + 1) Ca) (4.4)

B) Antisymmetric distribution. In the expansion of the operator Qe
the lowest power of O will be the third. Discarding all powers of 3
higher than the third, we obtain the equations

8 (31) =0, 3 (9) = (4.5)

Hence it follows that

o = C12? 4 Dy -+-E), Oy = Cax? + Dyz +E, (4.9

To these formulas correspond stresses connected with a bending moment

and a shearing force
A, { h? .
cx=(Alz+Bl)yi Gy=0v “xv= 2 ( 4 —y)

4.7
(A) = — 28,34 (31 + 83) C1, By = — 2183 (81 + 23) (D1 + ACy)) @
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The solution of the problem for a strip of finite length is obtained
by adding the homogeneous solutions (4.4) and (4.7) to that for the in-
finite strip. The three constants Ao* Ay, Bl, can always be selected so
that the necessary conditions (integrated or averaged) on the end faces
can be satisfied.

The method of solution for a strip will be illustrated with two
examples.

5. Polynomial distribution of load. Equations (2.4) and (3.4) in ex-
panded form can be written out in the following manner

0+ aad® + 205 4. . L) Oy = —TE_ (5.1)
: T T T s sk '
"
(B0 Bud - oy =y (5.2)
where
pPL=Pp, s+ s (st — )%
R = (- {}i h 21
Yy
(i=1,2,..) (5.3)
=9, i1t )t — (-
L am (— : K
gt e TN TG T M

If p;, and 4, are given in the form of integral polynomials of x of
degree n (where n is a positive integer), then it is easy to see that
axk will be a polynomial of degree n + 1, and Bwk will be a polynomial
of degree n + 3. The determination of the unknown coefficients of the
functions Ox,, Oy, does not present any great difficulty; we obtain the
equation for them by equating coefficients of like powers of x on the
left-hand and right-hand sides of (5.1) and (5.2).

Suppose, e.g. that one face of a strip is clamped while the other is
free (a cantilever) and that the long edges are subjected to normal
tractions distributed according to a cubic paraboloidal law q3x3 18
(Fig. 3). The stresses can be built up from those resulting from the
symmetric loading

)
s %7,
p=—2(2V,  x=0 6.4 /1)
2\1
and those from the antisymmetric loading 134 z
=Dz t=0 55 ¢ e
a=2 (7). (5.5) )
The first can be found with the aid of Fig. 3.

the functions
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NN, LI—" SRR N = 5
A= ey T T 12, 0xa=0 ©.8)

it will be neces-

Substituting these values into the formulas (2.6),
after

sary henceforth to expand the sines and cosines into series and,
multiplication, to reject all powers of 3 higher than the fourth (thus
BXI will be a polynomial of fourth degree). We obtain

Sx _k2(31+g,)~(ﬁ_y)35(aXX) (krswz:l/@)

oy = 0.5 s+ #0) 102 (91) — " 3 ) P 61
Wy ( = 5y? gt = 2B + ﬁce)
Ty =—k(s1+ Sz) ( — y’) 8 (dy) Bu

The final formulas for the stresses resulting from the symmetric
loading will have the form

R? ) 5. = e gsr® stz(k’y yn) (5.8)

39s
=0Tl s g%
=gk (Y

o v o ' XU B

On the free and x = ¢ the stress g, vanishes and T, constitutes a
self-equilibrating system of shearing forces so that the necessary con-

ditions turn out to be satisfied.

For the functions determining the stresses due to the antisymmetric
loading (5.5), we find the expressions

Is 5302 i 2 24 0 (5.9

6¢12m z *«30&&" =W( -+ 0.75mh2z%), Py =0 (5.9)

We now quote the final formulas for the stresses obtained from (3.6)

3 2 m
cx='2h—q:;s{~*§yxs+1—5(20y’~—3h‘y)xs+

+ ;:—0 [5k2hdy + 8 (m* — 5k?) h2yd + 16 (m? — k?) y°] x}
4
oy = g (= 599 0 4 5 oty — 880 4163915 | (5. 10
Ty = o ;,{(yz B ot — g8 — 2ahyp - 80y 2
b (2 -+ 18) 18 — BORPHY™- 48 (587 — ) ' + 64 (m? — K7 ']}

On the free end we have o, = 0 and the shearing stress can be re-
duced to a force the magnitude of which, per unit thickness of the strip,

is equal to
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P=_8"_orm2 20k (5.11)
1120003

In order to eliminate this "superfluous" force we must add a distri-
bution of stresses of the form (4.7)

_12P

=T

o __ 6P /h? 2
7y, o=0, = (Z —y ) (5.12)

The complete stresses in the cantilever are obtained by superposition
of the stresses determined by formulas (5.8), (5.10) and (5.12).

The expressions for the displacements will not be quoted. We merely
mention that the arbitrary constants o, ug, vy
be found from the additional conditions at the clamped end

from formulas (1.12) can

u=v="=0 forx=I y=0 (5.13)

6. Loading given in the form of a Fourier series. J.et the orthotropic
strip of length 2! be loaded on the long edges by tractions represented
in the form of Fourier series. An arbitrary problem of this type can be
solved with the aid of the Airy stress function in the form of a series
with the addition of polynomial terms (see, e.g. [1, pp.73—75]). In
particular, the solution of the problem of a strip with free end faces,
subjected to symmetric tractions was given in [5}.

We will show that it is easy to derive the solution of this problem
with the aid of the above-described, general method. It is sufficient
to consider the particular case when the ends are free, and when the
tractions are normal, symmetric and distributed on both edges y = 2h/2
according to a cosine law, i.e.

nax

P = pp C0S —= T=¢q=1t=0 6.1)

where n is an arbitrary, real non-zero number and the origin of coordi-
nates is placed at an arbitrary point on the axis of the strip.

In this case x, = 0, and Xy can be determined from the equation

Q (9y1) = p,, cos ’? (6.2)
Ye point out as a preliminary some formulas which facilitate the
finding of the solution of equation (6.2) and of the associated stresses
and displacements
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sin adx e**= sin aa ¢, cos adxe™ = cos aaq e** (6.3)

"

sin a0 cos Bd x sin ax = sinh aa cosh Pa Los ax
cos ad cos O x sin ax = cosh oa cosh Pa sin ax

sin ad sin PO x sin ax = — sinh «a sinh Ba sin ax

sin «d cos 30 x cos ax = - sinh aa cosh Pa sin ax

cos a0 cos PO x cos ax = cosh aa cosh Pa cos ax

sin a0 sin 3 x cos ax = - sinh aa sinh fla cos ax

By «, P and « is always meant an arbitrary, constant number not equal
to zero, real or complex, or a linear function of y. The derivation of
these formulas is elementary: the first two are found by expanding the
sine- and cosine-operators into series of powers of 3; the remainder
follow by replacing the arbitrary trigonometric functions by sums or
differences and finally expanding the operators in series.

Making use of (6.3), we find in the case s, # sq

dx1 = Ap,, (s1 — s5) sin ’L;‘_” (6.4)

where

A= ! , 1 =130 (6.5)
Sisinh$;Ycoshsg T — SgsinhsSyYcoshsy T 2

Substituting into (2.6) the value an = 0 and the expression for Oy,
and taking into account (6.3), we obtain the final formulas for the
stresses

5, = Akpn(s, sinhSzTcoshil—ri;El —_ szsinhs,-rcoshs’"”y) cos ﬂ;f

o, =—Ap, (Szlinhsz'\'cothsln# —_ sinnsl'rcoshs_”.’fli‘l> cos .'f.’;f
(6.6)

Ty = Akp, (sinhsﬂ'sinb slnluy —sinhsyY sinbs“"“y) sin f'l;f

On the ends of the strip, as well as in an arbitrary cross-section,
the stresses constitute a self-equilibrating system of forces (the re-
sultant force and moment vanish), and consequently the required condi-
tions on the free faces have been satisfied (as is sometimes said, "with
an accuracy according to Saint-Venant's principle").

It is just as simple to find the stresses also im the cases when the
tractions are distributed according to an exponential or hyperbolic law,
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